Solid State Physics and Electronic Devices
Advanced Solid State Physics. Surfaces and interfaces. Quantum coherence effects. Quantum confinement effects. The Landauer formula. Resonant tunneling and the Single Electron Transistor.
Advanced semiconductor-based devicres. Homojunctions, heterojunstions, metal-semiconductor junctions. Bipolar transisotrs. Fiedl effect tarnsisotrs MOS transiostors and power devices.
Materials for MEMS and Characterizations of technological processes (with Laboratory)
Introduction to Materials Characterization:
Morphology: optical electron, ionic microscopy; scanning probe microscopy
Structure: X-ray scattering and diffraction; electron, neutron, particle diffraction;
In-situ optical analysis: Photoluminescence and plasma-emission spectroscopy; Raman and Infrared spectroscopy
Composition: Electron Probe Microanalysis; Auger ,X-ray Photoelectron, Secondary Ion Mass Rutherford Backscattering Spectroscopy and Electron Recoil Detection Analysis
Finite Element Modelling
Mathematical approach - Program still lacking
Stochastic Processes
Mathematical approach - Program still lacking
Photonic devices
Mode coupling theory applied to optoelectomic devices. Lasers: semiconductor, DBR. DFB. Short pulse generation. Tunable lasers. Optical laser control. Modulators in semiconductor materials. Optical amplifiers. Pump-probe experiments. Integrated optoelectronic and photonic circuits.
Electronic properties of materials
Advanced aspects of electronic conduction in solids. Phonon-electron interaction. Charge transport in metallic thin films. Spin coherence and charge coherence. Spintronics of metals and semiconductors. Polymeric materials for electronics and photonics. Conducting polymers. Langmuir-Blodgett polymer films. Nonlinear materials. Ferroelectric and photoconducting polymers. Micro- and nanolithography of polymers.
Physics of Technological Processes for Micro & Nano Systems and Micro & Nano Systems (with Laboratory)
An overview of the technologies for micro- and nanosystem fabrication. Materials and processes for micromachining. Lithographic and embossing processes. Practical realization of simple microstructures and devices.
Micro and nanosystems for mechanical and thermal applications and for biotechnology. Basic principles of mechanical micro- and nanosystems. Working principles and applications. Thermal and biotech devices, with emphasis on diagnostic medicine applications. Overview of miscellaneous applications of micro- and nanosystems.
Microelectronic devices
Rescaling of devices and integrated circuits: roadmap and technological limits. Submicrometric MOC devices: physical and circuit models. Simulation of semiconductor devices. Transport models. Bipolar microtransistors grown on Si and on SiGe heterostructures.
Choice [Theoretical solid state physics]
Elementary excitations in solids. Plasmons, excitons, surface phonons. Quantum hall effect, Coulomb blockade. Cascade effects. Applications.
Elements of Monte Carlo method for solid-state system simulation.
Electrons and phonons in semiconductor heterostructures (3ECTS)
Professors : Gérald Bastard (DR, LPA-ENS), Emmanuelle Deleporte (Prof. ENS Cachan, LPQM), Francesca Carosella (MCF P7, LPA)
Part 1
Part 2
Examples of problem class:
Quantum theory of light (3ECTS)
Professor : Bertrand Delamotte (DR CNRS, LPTMC)
SEMI-CLASSICAL THEORY OF LIGHT MATTER INTERACTION
• Free particle of Spin 1/2
• Jauge invariance of Schroedinger equation ; Pauli Hamiltonian
• Semiclassical theory of light – matter interaction
• Electron-field interaction and Fermi golden rule ; transition rate
QUANTUM NATURE OF LIGHT : PHOTONS
• Fock space
• Operators : electric field, momentum, photon number
• The Casimir effect
• Special states of the electromagnetic field : coherent states, squeezed states
PHOTON EMISSION AND ABSORPTION
• Hamiltonian electron-photon; revisiting the Fermi golden rule
• Spontaneous and stimulated emission
• Natural linewidth
• Dipolar electric emission
• Diffusion of a photon from an atom
Statistical field theory (3ECTS)
Professor : F. Van Wijland (Prof, UP7)
The course intends to provide an advanced introduction to the theoretical aspects of collective phenomena in classical and quantum systems. Emphasis is first put on critical phenomena and scale invariance in classical systems. These ideas are then seen at work in quantum systems.
Foundations [5 lectures]
Phase transitions in magnetic systems. Mean field. Universality. [1 lecture]
GinzburgLandau free energy, functional methods, scale invariance. [1lecture]
Introduction to the renormalization group. Real space and momentum shell approaches. Critical exponents. [2 lectures]
Coherent states and path integrals for bosons and fermions. Green's functions. Free particles. [1 lecture].
Collective phenomena in quantum systems [5 lectures]
Bose gases: Quantum phase transitions. Finite temperature effects. Trapped atomic gases.[3 lectures].
Interacting fermions: Entanglement in quantum spin chains. Random phase approximation for the electron gas. Luttinger liquids. Superconductivity. [2 lectures].
References
Exercise and Problem set available for download on the course webpage (yet to be translated into English).
P.M. Chaikin and T.C. Lubensky, Principles of condensedmatter physics, Cambridge
University Press, 1995. Chapters 3,4 et 5.
J.W. Negele and H. Orland, Quantum manyparticle systems, Perseus Books, 1998.
Chapters 1, 2 and 3.
S. Sachdev, Quantum phase transitions, Cambridge University Press, 1999. Chapters 10
and 11.
L. Shäfer, Phys. Rep. 301, 205 (1998)
R. Shankar, Rev. Mod. Phys. 66, 129 (1994)
H.T.C. Stoof, Field theory for trapped atomic gases, Lecture notes for Les Houches
summer school on coherent atom waves (1999), condmat/0010441
H.T.C. Stoof, Statistical field theory, lecture notes, http ://www.fys.ruu.nl/~stoof/SFT.pdf.
Introduction to photonic quantum devices (3ECTS)
Professors : F. Ozanam (DR, LPMC), I. Sagnes (DR, LPN)
First part: basics of optoelectronics and semiconductor photonic devices
1 – Basics of semiconductor physics
• Electrons in solids: wavefunctions, band structures, effective mass
• Statistics of semiconductors: Fermi-Dirac, semi-classical approximation, free-carrier density
• Semiconductor doping: donors and acceptors, temperature regimes
• Optical absorption: matrix element and absorption coefficient in direct-bandgap semiconductors, joint density of states, phonons and absorption in indirect-bandgap semiconductors
• Non-radiative recombination
2 – Basics of semiconductor devices
• Transport in semiconductors: diffusion and conductivity, Drude and Boltzmann
• Quasi-neutral approximation: rate equations in doped semiconductors, minority-carrier evolution, application to photocarrier injection and surface recombination
• p-n junctions: space charge and band profile, I-V characteristics and Shockley approximation, quasi Fermi levels
• Photovoltaic detectors
3 – When electric fields come into play
• Perturbation of electronic states: enveloppe function approximation, Franz-Keldysh effect
• Application to heterostructures: quantum wells, intersubband transitions, QWIPs
• Modulators: Quantum Confined Stark effect, QCSE vs. FK, designs
• Introduction to non-linear optics: coupled-wave equations, slowly-varying-amplitude approximation, second-order processes and wave-vector mismatch
• Second-order non-linear optics in semiconductors: susceptibility enhancement, phase-matching schemes
4 – Light emission in semiconductors
• Radiative recombination and photoluminescence spectrum
• Light-Emitting Diodes: carrier lifetime, internal quantum yield, light extraction
• Stimulated emission: absorption, optical gain and Bernard-Duraffourg inversion condition
• Double-heterostructure laser: electron and photon confinement, threshold, processing
• Quantum-well laser: separate confinement, interband absorption and gain in quantum wells, threshold, comparison with DH, structures
• Introduction to quantum-cascade laser: unipolar scheme, active part, superlattices and injector design
5 – From optoelectronics to photonic devices
• Distributed-feedback lasers: principle, mode coupling, DFB operation
• Vertical-cavity surface-emitting lasers: principle, Bragg mirrors, cavity design, electrical injection
• Introduction to photonic crystals: DBR as 1D photonic crystals, modes and band structures, 2D and 3D generalisation, application to integrated optics, analogy with electron states and limits
• Application to light extraction: emission from a cavity, light extraction and refractive-index engineering
Second Part : Fabrication of photonic devices
6 - Introduction to semiconductor device processing
• Growth : molecular beam epitaxy, MOCVD
• Photolithography
• Processing of devices : etching, metallisations, …
7 – Heteroepitaxy : the example of Germanium on Silicon
8 - Nanowires and nanostructures : growth and characterization
9 - Visit at the « Laboratoire de Photonique et Nanostructures » in Marcoussis
Introduction to electronic quantum devices (3ECTS)
Professors : P. Joyez (Ch CEA), P. Lafarge (Prof. UP7, MPQ)
• Rappels de physique des solides : structures de bandes, métaux, semiconducteurs, phonons, transport diffusif…
• Seconde quantification
• Transport quantique : longueurs caractéristiques, quantification de la conductance, formule de Landauer, bruit de courant dans les conducteurs quantiques, localisation…
• Electrons en champ magnétique : niveaux de Landau, effet Hall quantique entier, fractionnaire, états de bord.
• Supraconductivité : Théorie BCS, effet Josephson, supraconductivité mésoscopique, réflexion d'Andreev.
• Transport dans les nanotubes de carbone.
Nano-objets et Nanomatériaux Fonctionnels (3ECTS)
Professors : Thierry Gacoin (Ecole Polytechnique, PMC), D. Carrière (CEA)
David CARRIÈRE
Laboratoire Interdisciplinaire sur l'Organisation Nanométrique et Supramoléculaire (LIONS), CEA/Saclay
Partie 1: La matière molle : propriétés, nanomatériaux et dispositifs
Ce cours est consacré à l’utilisation de la matière molle dans le monde des nanomatériaux et des dispositifs nanométriques : liquides, tensioactifs, polymères, cristaux liquides et matériaux d’origine biologique ou bioinspirés. On présentera pour chaque représentant les concepts fondamentaux puis les principes de mise en forme des matériaux et d’utilisation en dispositifs.
1 Introduction : pourquoi la matière molle ?
2 Les liquides simples
3 Tensioactifs
4 Polymères
5 Cristaux liquides
6 Matériaux et composants biologiques
Partie 2 : Nanomatériaux Fonctionnels
Thierry GACOIN
Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique.
L’étude des propriétés de la matière à l’échelle nanométrique ouvre un champ important d’investigation à la fois sur le plan fondamental, ou il s’agit de comprendre des effets physiques nouveaux, et sur le plan appliqué pour exploiter ces propriétés pour des applications innovantes. Ce cours vise à donner les bases permettant de comprendre les enjeux et les développements récents des recherches dans les domaines des nanomatériaux. Après un bref rappel des problématiques structures/propriétés relevant des sciences des matériaux, une première partie du cours est consacrée à la description des principales techniques d’élaboration des nanomatériaux considérés comme l’assemblage de nano-objets. Une deuxième partie est consacrée à la description des propriétés physiques des nano-objets, notamment en rapport avec les effets de taille et d’interactions avec leur environnement. Enfin, la dernière partie du cours sera consacrée à la description, sur des exemples concrets, des applications actuelles des nanomatériaux, notamment dans le domaine de l’optique et de la biologie.
Le plan de ce cours est le suivant :
1) Sciences des matériaux et enjeu des recherches sur les nanomatériaux
- Les sciences des matériaux : définitions, contexte et enjeu des recherches
- Techniques d’élaboration et de mise en forme des matériaux
- Relations structure/propriétés dans les matériaux
- Nanomatériaux : définitions, différentes classes, propriétés spécifiques liées à la taille ou à la surface
2) Les nanoparticules en tant qu’objets individuels
- Introduction : les différents types de nanoparticules, contexte des recherches sur les nanoparticules
- Procédés de synthèse et techniques de caractérisation des nanoparticules
- Propriétés physiques des nanoparticules
3) Nanomatériaux
- Nanoconstruction : techniques d’élaboration des nanomatériaux
• procédés « chimiques » : polymères, sol-gel, colloïdes, procédés biomimétiques, auto-assemblage
• procédés « physiques » (lithographie…)
- Fonctionnalisation chimique des surfaces
- Nanomatériaux à base de nanoparticules (composite, auto-assemblage…)
- Nanomatériaux poreux
- Autres nanomatériaux
4) Applications des nanomatériaux
- Couches minces nanostructurées : élaboration, propriétés et exemples d’applications dans le domaine de l’optique
- sondes luminescentes pour la biologie
- applications thérapeutiques des nanoparticules
- biocapteurs
Quantum probes for condensed matter (3ECTS)
Professors : Yves Garreau (Prof. Paris7, SOLEIL-MPQ) and Sylvie Rousset (DR, MPQ)
This lecture aims to introduce the experiments allowing to determine the atomic, electronic and magnetic structure of nano-objects. The measurements can be extremely localized as in the case of scanning probe microscopy. This new microscopy concept has strongly contributed to the development of nano-science. Then we will present how the physical and chemical properties of the nano-objects can be determined at the atomique scale. The ultimate microscopy techniques will be introduced.
Nowadays the photon equally constitutes a particularly attractive probe; the highly brilliance micro-beam obtained thanks to the third generation synchrotron alloys to obtain information about individual object as well as about assembled objects. The diffraction, the diffuse scattering, the absorption and the photoemission are among the powerful tools permitting to reveal the quantum properties of the matter.
The lecture, through the state-of-the art research, will deal with the experimental aspects of the measure and with the theoretical aspects of the physical processes concerned.
Experimental projects in nanosciences (6ECTS)
Professors : A. Anthore (MCF Paris7, MPQ), F. Raineri (MdC Paris7, LPN), S. Laurent (MdC Paris 7, MPQ).
In this original course, students will get trained with experimental techniques used in nanosciences. During the first three weeks of the Master, students will have to make an experimental project in the nanosciences field like the elaboration and characterization of metallic nanoparticles, the optic of semiconducting laser, the electronic conduction in atomic contacts or organic materials, nanotubes physics, quantum optics...
A specific nanoscience area dedicated to teaching will be available with free of use instruments like an atomic force microscope, a scanning tunnelling microscope, a transmission electron microscope or an optic microscope. All students will also be initiated to clean room techniques during three days of practise.
Quantum optoelectronics (3ECTS)
Professors : C. Sirtori (Prof. Paris7, MPQ), A. Vasanelli (MCF Paris7, MPQ)
- Superlattices
- Bloch oscillations and Wannier Stark quantization
- Intersubband transitions and electron dispersion
- Oscillator strength
- Dipole charge oscillations
- Introduction: Laser diodes vs quantum cascade lasers
- Reminder of guided optics
- Plasmon waveguides
- Rate equations
- Gain
- From near infrared to THz optoelectronics
Devices and quantum information (3ECTS)
Professors : F. Grosshans (CR LPQM-ENS Cachan), S. Ducci (Prof. Paris7)
Theoretical quantum information
1. The qubit and its states
* quick review of the basic quantum formalism (kets, bras and
density matrices)
* No cloning theorem and Wiesner's unforgeable banknotes
* Quantum Key Distribution and BB84 protocol
2. Quantum Entanglement 1 : Definition and some Properties
* Formal definition (as non separable state)
* Apparent Heisenberg inequality violation
* Link with partial trace
* Entanglement detection for pure and mixed states
* Entanglement monogamy and application to QKD
* Partial transpose and its physical meaning
3. Quantum Entanglement 2: Bell inequalities and Application
* Entanglement is not a limitation of quantum formalism
* Bell inequalities (mainly CHSH)
* GHZ Paradox
* Some Entanglement application
* The 4 Bell States
* Quantum Dense Coding
* Quantum Teleportation
4. Introduction to Quantum Computation
* Grover's Algorithm
* Quantum Error Correcting Codes
Devices for quantum information
5. Introduction :
Experimental implementation of quantum information : challenges and some famous experiments.
6. Photon sources :
Single photon sources and their characterization : Hanbury Brown and Twiss interferometry, colloidal and grown quantum dots, colored centers in diamonds,..
Entangled photon sources and their characterization : Bell inequality test, density matrix reconstruction, nonlinear dielectric crystals and fibers, quantum dots, semiconductor waveguides,…
7. Single photon detectors :
Photomultipliers, single photons avanlanche photodiodes, supraconducting detectors
8. Quantum metrology :
absolute detector calibration, absolute radiance measurement, polarization mode dispersion, quantum ellipsometry …
9. Physical implementations of quantum computation :
General overview, exemple of trapped ions.
Nanomagnetism and spintronics (3ECTS)
Enseignants : H. Jaffres (CR, UMR CNRS -Thales), P. Seneor (MCF Paris11)
The ‘NanoMagnetism and Spintronics’ course targets the physics of Magnetism, of Magnetism at the nanometer scale (NanoMagnetism) and the spin-dependant transport in magnetic Nanostructures, scientific discipline designated today as Spin Electronics. After having introduced the fundamentals of orbital and spin localized magnetism in ionic systems, the course will tackle the important notions of paramagnetic, ferromagnetic and antiferromagnetic order. An important effort will be brought on the understanding of the establishment of band-ferromagnetism of 3d transition metals taking into account atomic exchange interactions. The second part of this course will be devoted some more actual problems of spin-dependent transport in Magnetic nanostructures (magnetic multilayers, nanowires, Magnetic tunnel junctions). The concepts of spin-dependent conduction in the diffusive regime, spin diffusion length and spin accumulation will be clearly emphasized to explain Giant MagnetoResistance (GMR) and Tunnel Magnetoresistance (TMR) effects. An opening will be done on the Magneto-Coulomb effects obtained with nanoparticules dispersed between ferromagnetic reservoirs and on spin transfer effects observed on metallic nanopillars and magnetic tunnel junctions.
Spins and surfaces (3ECTS)
Professors : A. Rowe (CR, LPMC), J. Peretti (CR, LPMC)
Introduction to The physics of spin-polarized electrons
The spin-orbit interaction
The spin-orbit interaction in electron scattering
The spin-orbit interaction in semiconductors : optical pumping and spin dynamics.
The exchange interaction
The exchange interaction in electron scattering
The spin filtering effects in magnetic thin films
Spin-polarized electron spectroscopy and microscopy
Spin-polarized hot-electron transport in ferromagnetic metal / semi-conductor devices
The spin-LED
The spin-valve transistor (SVT)
The magnetic tunnel transistor (MTT)
The spin-FET
Charge and spin semiconductor quantum devices
20th Century Quantum Devices
Switching devices in vacuum
Solid switching devices
Junctions; minority carrier injection and lifetime
Quantum mechanics of spin
Basic quantum mechanical notions of spin; Bloch sphere and density matrix
Spin resonance
Fully quantum spin devices
Spin Transport and Hybrid Spin Devices in Semiconductors
The spin-orbit interaction in solids
Spin relaxation mechanisms in semiconductors
Modification of dispersion relations in the presence of the spin-orbit interaction
Electrical spin injection
Exotic effects through spin/transport coupling
Datta/Das spin-FET